Approximating Full Steiner Tree in a Unit Disk Graph
نویسندگان
چکیده
Given an edge-weighted graph G = (V,E) and a subset R of V , a Steiner tree of G is a tree which spans all the vertices in R. A full Steiner tree is a Steiner tree which has all the vertices of R as its leaves. The full Steiner tree problem is to find a full Steiner tree of G with minimum weight. In this paper we present a 20-approximation algorithm for the full Steiner tree problem when G is a unit disk graph.
منابع مشابه
On full Steiner trees in unit disk graphs
Given an edge-weighted graph G = (V,E) and a subset R of V , a Steiner tree of G is a tree which spans all the vertices in R. A full Steiner tree is a Steiner tree which has all the vertices of R as its leaves. The full Steiner tree problem is to find a full Steiner tree of G with minimum weight. In this paper we consider the full Steiner tree problem when G is a unit disk graph. We present a 2...
متن کاملA PTAS for Node-Weighted Steiner Tree in Unit Disk Graphs
The node-weighted Steiner tree problem is a variation of classical Steiner minimum tree problem. Given a graph G = (V,E) with node weight function C : V → R and a subset X of V , the node-weighted Steiner tree problem is to find a Steiner tree for the set X such that its total weight is minimum. In this paper, we study this problem in unit disk graphs and present a (1+ε)-approximation algorithm...
متن کاملComputing a Tree Having a Small Vertex Cover
We consider a new Steiner tree problem, called vertex-cover-weighted Steiner tree problem. This problem defines the weight of a Steiner tree as the minimum weight of vertex covers in the tree, and seeks a minimum-weight Steiner tree in a given vertex-weighted undirected graph. Since it is included by the Steiner tree activation problem, the problem admits an O(logn)-approximation algorithm in g...
متن کاملTwo Constant Approximation Algorithms for Node-Weighted Steiner Tree in Unit Disk Graphs
Given a graph G = (V,E) with node weight w : V → R and a subset S ⊆ V , find a minimum total weight tree interconnecting all nodes in S. This is the node-weighted Steiner tree problem which will be studied in this paper. In general, this problem is NP-hard and cannot be approximated by a polynomial time algorithm with performance ratio a lnn for any 0 < a < 1 unless NP ⊆ DTIME(n), where n is th...
متن کاملNode-weighted Steiner tree approximation in unit disk graphs
Given a graph G = (V ,E) with node weight w : V → R+ and a subset S ⊆ V , find a minimum total weight tree interconnecting all nodes in S. This is the node-weighted Steiner tree problem which will be studied in this paper. In general, this problem is NP-hard and cannot be approximated by a polynomial time algorithm with performance ratio a lnn for any 0 < a < 1 unless NP ⊆ DTIME(nO(logn)), wher...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014